博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
TensorFlow实战学习笔记(14)------VGGNet
阅读量:5101 次
发布时间:2019-06-13

本文共 5657 字,大约阅读时间需要 18 分钟。

一、VGGNet:5段卷积【每段有2~3个卷积层+最大池化层】【每段过滤器个数:64-128-256-512-512】

每段的2~3个卷积层串联在一起的作用:

2个3×3的卷积层串联的效果相当于一个5×5的卷积层,即一个像素会跟周围5×5的像素产生关联。【28*28的输入经过一次5*5得到24*24,s=1,p=0,(28-5)/1 + 1 = 24。而28*28经过2个3*3也可以得到24*24.】

3个3×3的卷积层串联的效果相当于一个7×7的卷积层,

  • 好处一:3个3×3的卷积层串联拥有的餐数量比1个7×7的参数量少。只是后者的:(3×3×3)/ (7 × 7) = 55 %。
  • 好处二:3个3×3的卷积层拥有比1个7×7的卷积层更多的线性变换(如,前者可以使用三次Relu函数,后者只有一次),使得CNN对特征的学习能力更强。

 

VGG探索了卷积神经网络的深度与其性能之间的关系,反复堆叠3×3的小型卷积核和2×2的最大池化层,构筑了16~19层深度的卷积神经网络。

二、VGG训练的技巧:

  1. 先训练级别A的简单网络,再复用A网络的权重来初始化后面的几个复杂模型,这样训练收敛的速度更快。
  2. 在预测时,VGG采用Multi-Scale的方法,将图像scale到一个尺寸Q,并将图片输入卷积网络计算。然后在最后一个卷积层使用滑窗的方式进行分类预测,将不同窗口的分类结果平均,再将不同尺寸Q的结果平均得到最后结果。提高数据利用率和预测准确率
  3. 采用了Multi-scale做数据增强,防止过拟合

 三、代码:

#加载模块from datetime import datetimeimport mathimport timeimport tensorflow as tf#定义函数:卷积层、池化层、全连接层#conv_op用来创建卷积层def conv_op(input_op , name ,kh , kw , n_out, dh ,dw , p):    n_in = input_op.get_shape()[-1].value    with tf.name_scope(name) as scope:        w = tf.get_variable(scope+'w',shape = [kh,kw,n_in,n_out], dtype = tf.float32 ,                                initializer=tf.contrib.layers.xavier_initializer_conv2d())        conv = tf.nn.conv2d(input_op,w,strides = [1,dh,dw,1],padding = 'SAME')        b = tf.Variable(tf.constant(0.0,shape = [n_out] , dtype = tf.float32),trainable = True , name = 'b')        z = tf.nn.bias_add(conv,b)        activation = tf.nn.relu(z,name = scope)        p+=[w,b]        return activation#用来创建全连接层def fc_op(input_op,name,n_out,p):    n_in = input_op.get_shape()[-1].value    with tf.name_scope(name) as scope:        w = tf.get_variable(scope+'w',shape = [n_in,n_out],dtype = tf.float32,                            initializer= tf.contrib.layers.xavier_initializer())        b = tf.Variable(tf.constant(0.1,shape = [n_out],dtype = tf.float32),name = 'b')        activation = tf.nn.relu_layer(input_op,w,b,name = scope)        p += [w,b]        return activation#用来创建池化层def mpool_op(input_op,name,kh,kw,dh,dw):    return tf.nn.max_pool(input_op,ksize = [1,kh,kw,1],strides = [1,dh,dw,1],padding = 'SAME',name = name)#建立VGG模型def inference_op(input_op,keep_prob):        p=[]        conv1_1=conv_op(input_op,name="conv1_1",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)        conv1_2=conv_op(conv1_1,name="conv1_2",kh=3,kw=3,n_out=64,dh=1,dw=1,p=p)        pool1=mpool_op(conv1_2,name="pool1",kh=2,kw=2,dw=2,dh=2)         conv2_1=conv_op(pool1,name="conv2_1",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)        conv2_2=conv_op(conv2_1,name="conv2_2",kh=3,kw=3,n_out=128,dh=1,dw=1,p=p)        pool2=mpool_op(conv2_2,name="pool2",kh=2,kw=2,dw=2,dh=2)         conv3_1=conv_op(pool2,name="conv3_1",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)        conv3_2=conv_op(conv3_1,name="conv3_2",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)        conv3_3=conv_op(conv3_2,name="conv3_3",kh=3,kw=3,n_out=256,dh=1,dw=1,p=p)        pool3=mpool_op(conv3_3,name="pool3",kh=2,kw=2,dw=2,dh=2)          conv4_1=conv_op(pool3,name="conv4_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)        conv4_2=conv_op(conv4_1,name="conv4_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)        conv4_3=conv_op(conv4_2,name="conv4_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)        pool4=mpool_op(conv4_3,name="pool4",kh=2,kw=2,dw=2,dh=2)          conv5_1=conv_op(pool4,name="conv5_1",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)        conv5_2=conv_op(conv5_1,name="conv5_2",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)        conv5_3=conv_op(conv5_2,name="conv5_3",kh=3,kw=3,n_out=512,dh=1,dw=1,p=p)        pool5=mpool_op(conv5_3,name="pool5",kh=2,kw=2,dw=2,dh=2)         shp=pool5.get_shape()        flattened_shape=shp[1].value*shp[2].value*shp[3].value        resh1=tf.reshape(pool5,[-1,flattened_shape],name="resh1")         fc6=fc_op(resh1,name="fc6",n_out=4096,p=p)        fc6_drop=tf.nn.dropout(fc6,keep_prob,name="fc6_drop")         fc7=fc_op(fc6_drop,name="fc7",n_out=4096,p=p)        fc7_drop=tf.nn.dropout(fc7,keep_prob,name="fc7_drop")         fc8=fc_op(fc7_drop,name="fc8",n_out=1000,p=p)        softmax=tf.nn.softmax(fc8)        predictions=tf.argmax(softmax,1)        return predictions,softmax,fc8,p#时间差def time_tensorflow_run(session,target,feed,info_string):        num_steps_burn_in=10        total_duration=0.0        total_duration_squared=0.0        for i in range(num_batches+num_steps_burn_in):                start_time=time.time()                _=session.run(target,feed_dict=feed)                duration=time.time()-start_time                if i>=num_steps_burn_in:                        if not i%10:                                print('%s:step %d,duration=%.3f' % (datetime.now(),i-num_steps_burn_in,duration))                        total_duration+=duration                        total_duration_squared+=duration*duration        mn=total_duration/num_batches        vr=total_duration_squared/num_batches-mn*mn        sd=math.sqrt(vr)        print('%s:%s across %d steps,%.3f +/- %.3f sec / batch' % (datetime.now(),info_string,num_batches,mn,sd))#预测def run_benchmark():        with tf.Graph().as_default():                image_size=224                images=tf.Variable(tf.random_normal([batch_size,image_size,image_size,3],dtype=tf.float32,stddev=1e-1))                keep_prob=tf.placeholder(tf.float32)                predictions,softmax,fc8,p=inference_op(images,keep_prob)                init=tf.global_variables_initializer()                sess=tf.Session()                sess.run(init)                time_tensorflow_run(sess,predictions,{keep_prob:1.0},"Forward")                objective=tf.nn.l2_loss(fc8)                grad=tf.gradients(objective,p)                time_tensorflow_run(sess,grad,{keep_prob:0.5},"Forward-backward")#训练batch_size=32num_batches=100run_benchmark()

 

转载于:https://www.cnblogs.com/Lee-yl/p/10053733.html

你可能感兴趣的文章
可选参数的函数还可以这样设计!
查看>>
[你必须知道的.NET]第二十一回:认识全面的null
查看>>
Java语言概述
查看>>
关于BOM知识的整理
查看>>
使用word发布博客
查看>>
面向对象的小demo
查看>>
微服务之初了解(一)
查看>>
GDOI DAY1游记
查看>>
收集WebDriver的执行命令和参数信息
查看>>
数据结构与算法(三)-线性表之静态链表
查看>>
mac下的mysql报错:ERROR 1045(28000)和ERROR 2002 (HY000)的解决办法
查看>>
Hmailserver搭建邮件服务器
查看>>
django之多表查询-2
查看>>
快速幂
查看>>
改善C#公共程序类库质量的10种方法
查看>>
AIO 开始不定时的抛异常: java.io.IOException: 指定的网络名不再可用
查看>>
MyBaits动态sql语句
查看>>
HDU4405(期望DP)
查看>>
拉格朗日乘子法 那些年学过的高数
查看>>
vs code 的便捷使用
查看>>